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Abstract
Edge detection from Fourier data has been emerging in many applications. The concentration
factor method has been widely used in detecting edges from Fourier data. We present a
theoretic analysis of the concentration factor method for non-uniform Fourier data in this
paper. Specifically, we propose admissible conditions for the concentration factors such that
the edge detector converges to a smoothed approximation of the jump function. Moreover,
we also introduce some specific choices of admissible concentration factors and present
estimates of convergence rates correspondingly.

1 Introduction

Detecting edges (discontinuities) of a piece-wise smooth functions plays an important role
in many applications, such as detection of the bright band in radar data [11], brain tumor
detection [12], lane detection in autonomous driving [18]. When the collected data are within
the physical domain, many efficient numerical methods of edge detection have been devel-
oped, such as Canny edge detector [1] and Sobel operator [16]. On the other hand side, in
applications such as magnetic resonance imaging (MRI) and synthetic aperture radar (SAR),
the data are frequently collected in the frequency (Fourier) domain.

It will be much more challenging to detect edges from Fourier (spectral) data, since the
Fourier data are essentially global information of the unknown function and the edges are local
features. The concentration factor method has been introduced in [8] to detect edges from
uniform Fourier data. In particular, a characterization of admissible concentration factors is
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presented in [8] and convergence analysis are also included there. Moreover, various refined
concentration factor methods have been discussed in [5,9,10,15].

There have also been effort in developing concentration factor methods [3,6,7,14,17] for
non-uniformFourier data due to its emerging popularity in applications such asMRI andSAR.
In particular, [6] obtain certain analytic forms of the concentration factors through utilization
the Fourier frames, while [14,17] try to compute the concentration factors by solving discrete
optimization problems. Moreover, [7] incorporates the Fourier frames approximation into an
optimization model and solve the concentration factors according to a priori information on
the discontinuous pattern of the underlying function. While the analysis of the concentration
factor method for uniform Fourier data has been well studied, its analysis for nonuniform
Fourier data has not been fully developed yet. In this paper, we will employ the tools in frame
theory to analyze the concentration methods for non-uniform Fourier data. In particular, we
will present admissible conditions on concentration factors for non-uniform Fourier data
such that the edge detector converges to the edge function. Specifically, we will view the
edge detection problem as a function approximation of a “smoothed” edge function. In this
regard, we will employ the results of function approximation with Fourier frames in [13] to
derive admissible conditions such that the function approximation converges. Moreover, we
will also introduce some specific choices of admissible concentration factors and develop the
convergence analysis for such choices correspondingly.

We will briefly introduce the mathematical formulation of detecting edges from non-
uniform Fourier data and present the concentration factor method for non-uniform Fourier
data in Sect. 2. We then propose in Sect. 3 admissible conditions for concentration factors
through analyzing the error between the proposed edge detector and a “smoothed” edge
function. Moreover, we provide some examples of admissible concentration factors in Sect. 4
and present the convergence analysis correspondingly there. Numerical examples will be
shown in Sect. 5 to demonstrate the performance of our proposed methods. Finally, we make
some concluding remarks in Sect. 6.

2 Edge Detection fromNon-uniform Fourier Data

In this section, we will introduce the concentration factor method of detecting the edges of
a piece-wise smooth function from its non-uniform Fourier data. Specifically, we consider
an unknown function f : R → R that is supported on [0, 1] and piece-wise smooth. We
assume f has finitely many jump discontinuities in (0, 1). For some non-uniform frequencies
λ j ∈ R, −m ≤ j ≤ m, we let

ψ j (x) = e2π iλ j x , x ∈ [0, 1] (2.1)

and we are given the following non-uniform Fourier data

f̂ (λ j ) = 〈 f , ψ j 〉, −m ≤ j ≤ m, (2.2)

where the above inner product is defined as 〈g1, g2〉 = ∫ 1
0 g1(x)g2(x)dx for g1, g2 ∈

L2[0, 1]. We will try to locate all the jump discontinuities from such finite non-uniform
Fourier data.

We shall next reformulate the edge detection problem as a function approximation prob-
lem. To this end, we will define the jump function by

[ f ](x) = f (x+) − f (x−), x ∈ [0, 1].
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We point out that detecting the jump discontinuities is equivalent to recover the above jump
function. In simplicity of presentation, we will assume the underlying function f has only a
single jump discontinuity ξ ∈ (0, 1) in the following. We will see later that our method could
be extended directly to the more general case of multiple jump discontinuities. It follows
that

[ f ](x) = [ f ](ξ)χξ (x), x ∈ [0, 1],
where the indicator function χξ (x) is 1 if x = ξ and 0 otherwise.

Wenote that the indicator function is nontrivial only in a single pointwithmeasure zero and
it is not practical to obtain its approximation in L2[0, 1] directly. Instead, we will consider
a smoothed version of the indicator function. That is, instead of recovering the indicator
function, we will consider the following smoothed approximation

hε(x) := h

(
x − ξ

ε

)

, (2.3)

where h is a function centered around 0 taking a peak value 1 at 0 and ε is a positive constant.
We will discuss more about the choices of h later. It is direct to observe that hε would be
centered around ξ and would be close to the indicator function χξ when the parameter ε is
close to 0. For practical purpose, we often require h to be bell-shaped around 0 and ε to be
small.

We shall next turn to approximate the smoothed jump function [ f ](ξ)hε from the given
non-uniform Fourier data f̂ (λ j ),−m ≤ j ≤ m. We first give a conceptual description of our
method of approximating [ f ](ξ)hε . Specifically, we will derive an approximation by using
its frame expansion. To this end, we review the definition of frames below.

Suppose H is a separable Hilbert space. We say { f j : j ∈ N} is a frame [2] in H if there
exist positive constants A and B such that for any f ∈ H,

A‖ f ‖2H ≤
∑

j∈N
|〈 f , f j 〉H|2 ≤ B‖ f ‖2H.

We use S to denote the frame operator as

S f =
∑

j∈N
〈 f , f j 〉 f j , f ∈ H,

and f̃ j = S−1 f j , j ∈ N, is the canonical dual frame. It is direct to observe that we have the
following frame expansion for any f ∈ H

f =
∑

j∈N
〈 f , f j 〉 f̃ j .

In this paper, we will consider the Hilbert spaceH = L2[0, 1] and choose {ψ j : j ∈ Z} to
be a frame in L2[0, 1] with frame bounds A, B. It follows immediately that we could write
the smoothed jump function [ f ](ξ)hε as follows

[ f ](ξ)hε =
∑

j∈Z
〈[ f ](ξ)hε, ψ j 〉ψ̃ j ,

where {ψ̃ j : j ∈ Z} is the canonical dual frame of {ψ j : j ∈ Z}. We will derive approxima-
tions of 〈[ f ](ξ)hε, ψ j 〉 and ψ̃ j separately.
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We start with an approximation of 〈[ f ](ξ)hε, ψ j 〉. It follows from the definition of hε in
(2.3) and the definition of ψ j in (2.1) that

〈[ f ](ξ)hε, ψ j 〉 =
∫ 1

0
[ f ](ξ)h

(
t − ξ

ε

)

e−2π iλ j t dt .

A direct calculation through a change of variable gives that

〈[ f ](ξ)hε, ψ j 〉 = [ f ](ξ)εe−2π iλ j ξ

∫ (1−ξ)/ε

−ξ/ε

h(u)e−2π iλ j uεdu.

We let

R j (ε) = [ f ](ξ)εe−2π iλ j ξ

(∫ −ξ/ε

−∞
h(u)e−2π iλ j uεdu +

∫ ∞

(1−ξ)/ε

h(u)e−2π iλ j uεdu

)

.(2.4)

It follows that

〈[ f ](ξ)hε, ψ j 〉 = [ f ](ξ)εe−2π iλ j ξ ĥ(λ jε) − R j (ε). (2.5)

We will further obtain an approximation of 〈[ f ](ξ)hε(t), ψ j (t)〉 from the given non-
uniform Fourier data f̂ (λ j ),−m ≤ j ≤ m. To this end, we first derive another equivalent
form of f̂ (λ j ). It follows from the definition of f̂ j in (2.2) that

f̂ j = 〈 f , ψ j 〉 =
∫ 1

0
f (x)e−2π iλ j x dx, −m ≤ j ≤ m.

An integration by parts yields that for λ j 	= 0

f̂ j = 1

2π iλ j
[ f ](ξ)e−2π iλ j ξ + 1

2π iλ j

∫ 1

0
f ′(x)e−2π iλ j x dx, −m ≤ j ≤ m.

Also note that [ f ](ξ) = − ∫ 1
0 f ′(x)dx . It implies for all −m ≤ j ≤ m

[ f ](ξ)e−2π iλ j ξ = 2π iλ j f̂ j −
∫ 1

0
f ′(x)e−2π iλ j x dx .

Combining the above equality with (2.5), we have

〈[ f ](ξ)hε, ψ j 〉 = 2π iλ j f̂ jεĥ(λ jε) − Tj (ε) − R j (ε). (2.6)

where

Tj (ε) = εĥ(λ jε)

∫ 1

0
f ′(x)e−2π iλ j x dx . (2.7)

We point out that we will choose appropriate h and ε to make both Tj (ε) and R j (ε) small.
We will present more details about the error analysis in next section. In this regard, we will
use 2π iλ j f̂ jεĥ(λ jε) as an approximation of 〈[ f ](ξ)hε(t), ψ j (t)〉.

We next present an approximation of ψ̃ j .We remark that we do not have the closed form of
the canonical dual frame in general. That is, wewill need to derive a numerical approximation.
We will employ the admissible frame approach introduced in [13]. In particular, we will use
the following approximation of ψ̃ j :

ψ̃
†
j =

n∑

l=−n

bl, jφl , (2.8)
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where φl(x) = e2π ilx , B = [bl, j ]n,m
l=−n, j=−m is the Moore-Penrose pseudo-inverse of

[〈ψ j , φl〉
]m,n
j=−m,l=−n , and n has to satisfy certain sampling rate condition as shown in [13].

We note that the error analysis of this dual frame approximation is presented in [13]. We will
discuss more details in next section.

We are now ready to present the edge detection method of approximating the smoothed
jump function [ f ](ξ)hε(t) through combining the approximation of 〈[ f ](ξ)hε(t), ψ j (t)〉 in
(2.6) and the approximation of ψ̃ j in (2.8):

Em(ε) =
∑

| j |≤m

2π iλ j f̂ jεĥ(λ jε) ψ̃
†
j . (2.9)

We remark that we could view σ j = εĥ(λ jε) as the concentration factors for edge
detection with non-uniform Fourier data. It shares a similar form as that in edge detection
with uniform Fourier data. We will discuss in next section how to choose σ j , in particularly,
h and ε, to obtain a convergent approximation to the smoothed jump function [ f ](ξ)hε(t).

3 Error Analysis and Admissible Conditions

In this section, we will present the error analysis of the edge detection method (2.9) of
approximating the smoothed jump function [ f ](ξ)hε(t). In particular, we will investigate
the admissible conditions of h and ε such that the edge detector Em(ε) converges to the
smoothed jump function [ f ](ξ)hε(t). Furthermore, we will analyze the convergence rates
for some specific choices of h and εn . We point out that we will use the uniform metric to
measure the error. Since oscillations in the approximation might lead to false detections of
the edges, we will try to suppress the oscillations by requiring the convergence in the uniform
metric, which is used in [4] for detecting edges from uniform Fourier data.

We shall focus on estimating the approximation error ‖Em(ε)−[ f ](ξ)hε‖∞, where ‖·‖∞
denotes the supremum norm in L∞[0, 1]. We first decompose the error into a few terms. To
this end, we let

hε,m =
∑

| j |≤m

〈hε, ψ j 〉ψ̃†
j . (3.1)

It is direct to observe that

‖Em(ε) − [ f ](ξ)hε‖∞ ≤ ‖Em(ε) − [ f ](ξ)hε,m‖∞ + ‖[ f ](ξ)hε,m − [ f ](ξ)hε‖∞

It follows from (2.6), (2.9), and (3.1) that

‖Em(ε) − [ f ](ξ)hε,m‖∞ ≤
∥
∥
∥
∥

∑

| j |≤m

Tj (ε)ψ̃
†
j

∥
∥
∥
∥∞

+
∥
∥
∥
∥

∑

| j |≤m

R j (ε)ψ̃
†
j

∥
∥
∥
∥∞

.

We denote

κm = max| j |≤m
‖ψ̃†

j ‖∞. (3.2)

A direct computation yields

‖Em(ε) − [ f ](ξ)hε,m‖∞ ≤ κm
∑

| j |≤m

|Tj (ε)| + κm
∑

| j |≤m

|R j (ε)|.
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Consequently, we have

‖Em(ε) − [ f ](ξ)hε‖∞ ≤ κm
∑

| j |≤m

|Tj (ε)| + κm
∑

| j |≤m

|R j (ε)| + |[ f ](ξ)|‖hε,m − hε‖∞.

(3.3)

We will estimate the three terms on the right hand side of the above inequality separately.
We start with an estimate of

∑
| j |≤m |Tj (ε)|.

Proposition 3.1 If f is piece-wise smooth with a single jump at ξ ∈ (0, 1), then

∑

| j |≤m

|Tj (ε)| ≤ 4‖ f ′‖∞ + ‖ f ′′‖∞
2π

ε
∑

| j |≤m,λ j 	=0

|ĥ(λ jε)|
λ j

+ ε|ĥ(0)|‖ f ′‖∞.

Proof It follows from an integration by parts that for λ j 	= 0
∫ 1

0
f ′(x)e−2π iλ j x dx = 1

−2π iλ j

[

f ′(x)e−2π iλ j x
∣
∣
∣
x=ξ−

x=0
+ f ′(x)e−2π iλ j x

∣
∣
∣
x=1

x=ξ+

−
∫ 1

0
f ′′(x)e−2π iλ j x dx

]

.

A direct computation yields for λ j 	= 0
∣
∣
∣
∣

∫ 1

0
f ′(x)e−2π iλ j x dx

∣
∣
∣
∣ ≤ 4‖ f ′‖∞ + ‖ f ′′‖∞

2πλ j
.

When λ j = 0, we have
∣
∣
∣
∣

∫ 1

0
f ′(x)e−2π iλ j x dx

∣
∣
∣
∣ ≤ ‖ f ′‖∞.

The desired result follows from substituting the above two inequalities into the definition of
Tj (ε) in (2.7). ��

We next estimate the second term
∑

| j |≤m |R j (ε)| in (3.3).

Proposition 3.2 For any m ∈ N and ε > 0, there holds that

∑

| j |≤m

|R j (ε)| ≤ (2m + 1)|[ f ](ξ)|ε
(∫ −ξ/ε

−∞
|h(u)|du +

∫ ∞

(1−ξ)/ε

|h(u)|du
)

Proof A direct computation from the definition of R j (ε) in (2.4) yields that for any j ∈ N,

|R j (ε)| ≤ |[ f ](ξ)|ε
(∫ −ξ/ε

−∞
|h(u)|du +

∫ ∞

(1−ξ)/ε

|h(u)|du
)

,

which implies the desired result immediately. ��
It remains to estimate the third term ‖hε,m − hε‖∞ in (3.3). We point out that we always

assume h is a bell-shaped function satisfying the following conditions:
{
h(0) = max

x∈R h(x) = 1; h(x) ≥ 0, x ∈ R

h is decreasing on (0,∞) and increasing on (−∞, 0).
(3.4)
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In particular, we consider a specific Fourier frame given by the jittered non-uniform
sampling frequencies:

λ j = j + δ j , −m ≤ j ≤ m, (3.5)

where δ j is uniformly distributed in [− 1
4 ,

1
4 ]. It is well known [19] that it constitutes a frame

in L2[0, 1].
Proposition 3.3 Suppose {λk} is the jittered sampling with A, B as the corresponding frame

bounds and n = Aπ2

Aπ2+128
m. There holds that

‖hε,m − hε‖∞ ≤ √
2n + 1

2B

A
ε

(∑

|l|>n

ĥ2(εl)

)1/2

+ ε
∑

|l|>n

∣
∣ĥ(εl)

∣
∣

+
(

1 + 2B

A

√
2n + 1

)[∑

k≥1

h

(
k − ξ

ε

)

+
∑

k≤−1

h

(
1 + k − ξ

ε

)]

.

Proof We will estimate the difference of hε and hε,m through their shifted versions in the
following:

Hε(x) =
∑

k∈Z
hε(x + k) and Hε,m =

∑

k∈Z
hε,m(x + k). (3.6)

That is, we shall estimate ‖hε,m − hε‖∞ through the following decomposition:

‖hε,m − hε‖∞ ≤ ‖Hε,m − Hε‖∞ + ‖Hε − hε‖∞ + ‖Hε,m − hε,m‖∞. (3.7)

We first estimate ‖Hε − Hε,m‖∞. To this end, we define Qn(g) = ∑
|l|≤n〈g, φl〉φl for

g ∈ L2[0, 1], which is the standard Fourier partial sum. It is direct to observe that

‖Hε,m − Hε‖∞ ≤ ‖Hε,m − QnHε‖∞ + ‖QnHε − Hε‖∞.

We start with an estimate of ‖Hε,m − QnHε‖∞. In particular, we will employ the L2

estimate in [13] to derive the L∞ estimate. Note that from (2.8) and (3.1), we know Hε,m ∈
span {φl : −n ≤ l ≤ n}. On the other hand, we also have QnHε ∈ span {φl : −n ≤ l ≤ n}.
It implies

‖QnHε − Hε,m‖∞ ≤ √
2n + 1‖QnHε − Hε,m‖2,

where ‖·‖2 denote the norm in L2[0, 1].We point out that the condition n = Aπ2

Aπ2+128
m would

ensure the convergence of the admissible frame method in [13]. Specifically, by combining
the results in Theorem 5.1, Lemma 5.4, and Equation (5.2) in [13], we obtain that

‖QnHε − Hε,m‖2 ≤ 2B

A

(∑

|l|>n

|〈Hε, φl〉|2
)1/2

,

which implies

‖QnHε − Hε,m‖∞ ≤ √
2n + 1

2B

A

(∑

|l|>n

|〈Hε, φl〉|2
)1/2

. (3.8)

It follows from the definition of Hε in (3.6) and the definition of hε in (2.3) that

〈Hε, φl〉 =
∑

k∈Z

∫ 1

0
h

(
t + k − ξ

ε

)

e−2π ilt dt .
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A simple substitution yields

〈Hε, φl〉 = εe−2π ilξ
∫ ∞

−∞
h(u)e−2π iεludu = εe−2π ilξ ĥ(εl). (3.9)

Substitute it into (3.8) and we have

‖QnHε − Hε,m‖∞ ≤ √
2n + 1

2B

A
ε

(∑

|l|>n

ĥ2(εl)

)1/2

. (3.10)

We next estimate the second term ‖QnHε − Hε‖∞. It follows from a direct computation
that

‖QnHε − Hε‖∞ =
∥
∥
∥
∥

∑

|l|>n

〈Hε, φl〉φl

∥
∥
∥
∥∞

≤
∑

|l|>n

∣
∣〈Hε, φl〉

∣
∣.

Substituting (3.9) into the above inequality yields

‖QnHε − Hε‖∞ ≤ ε
∑

|l|>n

∣
∣ĥ(εl)

∣
∣,

which combined with Eq. (3.10) implies

‖Hε − Hε,m‖∞ ≤ √
2n + 1

2B

A
ε

(∑

|l|>n

ĥ2(εl)

)1/2

+ ε
∑

|l|>n

∣
∣ĥ(εl)

∣
∣. (3.11)

It remains to estimate the second term ‖Hε − hε‖∞ and the third term ‖Hε,m − hε,m‖∞
in the error decomposition (3.7). It follows from a direct computation from the definition of
Hε in (3.6) that

‖Hε − hε‖∞ =
∥
∥
∥
∥

∑

|k|≥1

hε(x + k)

∥
∥
∥
∥∞

=
∥
∥
∥
∥

∑

|k|≥1

h

(
x + k − ξ

ε

)∥
∥
∥
∥∞

.

By the assumption of h in (3.4), we have

‖Hε − hε‖∞ ≤
∑

k≥1

h

(
k − ξ

ε

)

+
∑

k≤−1

h

(
1 + k − ξ

ε

)

. (3.12)

We next estimate ‖Hε,m − hε,m‖∞. It follows from Theorem 5.1 and Equation (5.1) in
[13] that

‖Hε,m − hε,m‖2 ≤ 2B

A
‖Hε − hε‖2.

Note that Hε,m − hε,m ∈ span {φl : −n ≤ l ≤ n}, which implies ‖Hε,m − hε,m‖∞ ≤√
2n + 1‖Hε,m −hε,m‖2.On the other hand, we have ‖Hε −hε‖2 ≤ ‖Hε −hε‖∞. It follows

that

‖Hε,m − hε,m‖∞ ≤ 2B

A

√
2n + 1‖Hε − hε‖∞. (3.13)

Consequently, substituting (3.11), (3.12), and (3.13) into (3.7) yields the desired result.
��

We are now ready to combine these above estimates to obtain an estimate of the approxi-
mation error ‖Em(ε) − [ f ](ξ)hε‖∞.
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Theorem 3.4 Suppose f is piece-wise smooth with a single jump at ξ ∈ (0, 1), {λk} is the
jittered sampling with A, B as the corresponding frame bounds and n = Aπ2

Aπ2+128
m. If the

bell-shaped function h satisfies the assumption (3.4), then for any m ∈ N and ε > 0

‖Em(ε) − [ f ](ξ)hε‖∞ ≤ 2

A

4‖ f ′‖∞ + ‖ f ′′‖∞
2π

ε
∑

| j |≤m,λ j 	=0

|ĥ(λ j ε)|
λ j

+ 2

A
ε|ĥ(0)|‖ f ′‖∞

+ 2

A

√
2n + 1(2m + 1)|[ f ](ξ)|ε

(∫ −ξ/ε

−∞
|h(u)|du +

∫ ∞

(1−ξ)/ε

|h(u)|du
)

+|[ f ](ξ)|√2n + 1
2B

A
ε

(∑

|l|>n

ĥ2(εl)

)1/2

+ |[ f ](ξ)|ε
∑

|l|>n

∣
∣ĥ(εl)

∣
∣

+|[ f ](ξ)|
(

1 + 2B

A

√
2n + 1

)[∑

k≥1

h

(
k − ξ

ε

)

+
∑

k≤−1

h

(
1 + k − ξ

ε

)]

.

Proof We first obtain an estimate of κm as defined in (3.2). It follows from Theorem 5.1 and
Equation (4.3) in [13] that for 1 ≤ j ≤ m,

‖ψ̃†
j ‖2 ≤ 2

A
‖ψ j‖2 = 2

A
.

Moreover, we note that for 1 ≤ j ≤ m, ψ̃†
j ∈ span {φl : −n ≤ l ≤ n}, which implies

‖ψ̃†
j ‖∞ ≤ √

2n + 1‖ψ̃†
j ‖2 ≤ 2

A

√
2n + 1.

It follows that

κm ≤ 2

A

√
2n + 1.

This combined with Propositions 3.1, 3.2, 3.3, and the error decomposition (3.3) yields the
desired result. ��

In the rest of this section, wewill discuss the admissible conditions for the choices of h and
ε such that ‖Em(ε)−[ f ](ξ)hε‖∞ converges to 0. In particular, we will choose εm depending
on m and the bell-shaped function h according to the following admissible conditions: when
m → ∞

(i)
√
mεm

∑

| j |≤m

ĥ(λ j εm )

λ j
→ 0

(ii) m3/2εm
(∫ −ξ/εm

−∞ |h(u)|du + ∫ ∞
(1−ξ)/εm

|h(u)|du) → 0

(iii)
√
mεm

(
∑

|l|>n
ĥ2(εml)

)1/2

→ 0

(iv) εm
∑

|l|>n

∣
∣ĥ(εml)

∣
∣ → 0

(v)
√
m

[
∑

k≥1
h

(
k−ξ
εm

)

+ ∑

k≤−1
h

(
1+k−ξ

εm

)]

→ 0

Theorem 3.5 Assume the same conditions in Theorem 3.4 hold. If we choose the bell-shaped
function h and a sequence {εm} satisfying the above admissible conditions, then

‖Em(εm) − [ f ](ξ)hεm‖∞ → 0, as m → ∞.

Proof It follows from a direct computation by substituting the above admissible conditions
into Theorem 3.4. ��
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Fig. 1 Examples of admissible smoothing functions

4 Examples of Admissible Concentration Factors and Convergence
Rates

Wepoint out the admissible conditions for h and ε are not straightforward to check in practical
applications. We will present in this section a few examples of h and ε that are easier to use
in practice. Moreover, we will also analyze the convergence rates for such specific choices
of h and ε.

We first consider h satisfying the following condition: there exist positive constants c0
and δ such that

|h(t)| + |ĥ(t)| ≤ c0(1 + |t |)−1−δ, t ∈ R. (4.1)

We point out that the above condition is also considered in [4], which requires both the funtion
h and its Fourier transform have decay properties. We give a few examples of h satisfying
the above condition below

(a) h(x) = e−wx2 , w > 0.
(b) h(x) = (1 − x2)α+, α ≥ 1.

Figure 1 displays some specific examples of them.
We shall next derive a specific estimate of the approximation error ‖Em(ε)−[ f ](ξ)hε‖∞

for such choices of h.

Proposition 4.1 Suppose the same conditions in Theorem 3.4 hold. If additionally the bell-
shaped function h satisfies the above assumption (4.1), then there exists a positive constant
c such that for any m ∈ N, ε > 0, and 1 ≤ k ≤ m with log k ≤ (εk)−1−δ ,

‖Em(ε) − [ f ](ξ)hε‖∞ ≤ c[m1/2ε(εk)−1−δ + m3/2ε1+δ + (εm)−δ].

Proof We will estimate the four terms in the result of Theorem 3.4 separately by using the
additional assumption (4.1) on h.

We first present an estimate of
∑

| j |≤m
ĥ(λ j ε)

λ j
. For any 1 ≤ k ≤ m, we have

∑

| j |≤m

ĥ(λ jε)

λ j
=

∑

| j |≤k

ĥ(λ jε)

λ j
+

∑

k<| j |≤m

ĥ(λ jε)

λ j
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By the assumption (4.1), we will apply |ĥ(t)| ≤ c0 in the first term and apply |ĥ(t)| ≤
c0|t |−1−δ in the second term. It follows that

∑

| j |≤m

ĥ(λ jε)

λ j
≤ c0

∑

| j |≤k

1

λ j
+ c0ε

−1−δ
∑

k<| j |≤m

λ−2−δ
j

By the assumption of {λ j }, there exists some positive constant c1 such that

∑

| j |≤m

ĥ(λ jε)

λ j
≤ c1 log k + c1(εk)

−1−δ

For 1 ≤ k ≤ m and log k ≤ (εk)−1−δ , we have

∑

| j |≤m

ĥ(λ jε)

λ j
≤ 2c1(εk)

−1−δ

We next estimate the second term. It is enough to estimate the sum of the two inte-
grals

∫ −ξ/ε

−∞ |h(u)|du + ∫ ∞
(1−ξ)/ε

|h(u)|du. We will first estimate the second integral. By the

assumption (4.1), we have |h(t)| ≤ c|t |−1−δ . It implies
∫ ∞

(1−ξ)/ε

|h(u)|du ≤ c0

∫ ∞

(1−ξ)/ε

u−1−δdu = c0
δ

(1 − ξ)−δεδ.

Similarly, we have

∫ −ξ/ε

−∞
|h(u)|du ≤ c0

δ
ξ−δεδ.

It follows
∫ ∞

(1−ξ)/ε

|h(u)|du +
∫ −ξ/ε

−∞
|h(u)|du ≤ c0

δ
[ξ−δ + (1 − ξ)−δ]εδ.

We continue with estimates of

(
∑

|l|>n ĥ
2(εl)

)1/2

and
∑

|l|>n

∣
∣ĥ(εl)

∣
∣ in the third term. It

follows from a direct substitution of the assumption (4.1) that

(∑

|l|>n

ĥ2(εl)

)1/2

≤ c0√
1 + 2δ

ε−(1+δ)n−δ−1/2

and
∑

|l|>n

∣
∣ĥ(εl)

∣
∣ ≤ c0

δ
ε−(1+δ)n−δ.

It remains to estimate
∑

k≥1 h

(
k−ξ
ε

)

+ ∑
k≤−1 h

(
1+k−ξ

ε

)

in the fourth term. It follows

from (4.1) that

∑

k≥1

h

(
k − ξ

ε

)

≤ c0ε
1+δ

∑

k≥1

(k − ξ)−1−δ ≤ c0
δ

(1 − ξ)−δε1+δ.
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Similarly,

∑

k≤−1

h

(
1 + k − ξ

ε

)

≤ c0
δ

ξ−δε1+δ.

The desired result follows directly from substituting the above four estimates into the
result of Theorem 3.4. ��

We will choose ε to achieve the optimal convergence rate in the above result.

Theorem 4.2 Suppose the same conditions in Theorem 3.4 hold. If additionally the bell-
shaped function h satisfies the above assumption (4.1) and we choose

εm = m− δ+1/2
1+δ log− 1

1+δ m, (4.2)

then there exists a positive constant c such that for any m ∈ N

‖Em(εm) − [ f ](ξ)hεm‖∞ ≤ c[m− δ
2(1+δ) log

δ
1+δ m + m−(δ−3/2) log−1 m].

Proof It follows from substituting the above specific choice of εm (4.2) into Proposition
4.1 that there exists a positive constant c1 such that for any m ∈ N, 1 ≤ k ≤ m with
log k ≤ k−1−δmδ−1/2 logm

‖Em(εm) − [ f ](ξ)hεm‖∞ ≤ c1[k−1−δm
δ2+δ+1/2

1+δ log
δ

1+δ m

+m−(δ−3/2) log−1 m + m− δ
2(1+δ) log

δ
1+δ m].

The desired result follows from setting k = m
δ+1/2
1+δ in the above inequality. ��

We next consider another special class of functions: compactly supported functions. That
is, in addition to the assumption (4.1), we further assume h is supported on [−1, 1].

Corollary 4.3 Suppose the same conditions in Theorem 3.4 hold. If additionally the bell-
shaped function h satisfies the above assumption (4.1) and is supported in [−1, 1] and we
choose εm as in (4.2), then there exists a positive constant c such that for any m ∈ N

‖Em(εm) − [ f ](ξ)hεm‖∞ ≤ cm− δ
2(1+δ) log

δ
1+δ m.

Proof It is direct to observe that R j (ε) = 0, Hε = hε when ε ≤ min{ξ, 1 − ξ} and h is
supported on [−1, 1]. That is, the second term and the fourth term in the result of Theorem
3.4 would vanish. The desired result follows in a similar way to the proof of Theorem 4.2. ��

5 Numerical Experiments

We will present in this section the numeric performance of the edge detector Em(ε) in (2.9).
In particular, we will choose admissible h and ε for various data size and test functions to
show the numerical convergence of the edge detector Em(ε).

In all the numerical experiments below, we will use the jittered non-uniform sampling
frequencies as defined in Eq. (3.5).
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Fig. 2 Edge detectors with different bell functions h1 (top row), h2 (middle row), and h3 (bottom row) for
test function f1

Table 1 Approximation errors ‖Em (εm ) − [ f ](ξ)hεm ‖∞ for the test function f1

m h1 h2 h3

Error εm Error εm Error εm

16 1.4E−1 8.8E−2 9.1E−2 6.9E−2 8.7E−2 6.1E−2

32 9.2E−2 5.0E−2 5.9E−2 3.6E−2 4.9E−2 3.1E−2

64 5.9E−2 3.0E−2 3.7E−2 1.9E−2 2.7E−2 1.6E−2

128 4.2E−2 1.9E−2 2.2E−2 1.0E−2 1.4E−2 7.8E−3

Example 5.1 We consider the following test function with a a single jump discontinuity at
ξ = 0.5:

f1(x) =
{
x, 0 ≤ x ≤ 0.5

x − 1, 0.5 < x ≤ 1.

For each m ranging in 16, 32, 64, 128, we take the following three pairs of admissible h
and ε:

(a) h1(x) = (1 − x2)1+ and εm = m−1/2 log−1 m
(b) h2(x) = (1 − x2)2+ and εm = m−5/6 log−1/3 m

(c) h3(x) = e−5x2 and εm = m−1 log1/2 m

and compute the edge detectors in (2.9). We display them in Fig. 2.
Moreover, we compute the approximation error ‖Em(εm) − [ f ](ξ)hεm‖∞ between the

edge detector and the smoothed jump function for eachm ranging in 16, 32, 64, 128 and each
admissible choice of the bell-shaped function h and εm in the above three examples. We list
the results in Table 1.
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Fig. 3 Edge detectors with different bell functions h1 (top row), h2 (middle row), and h3 (bottom row) for
test function f2

Table 2 Approximation errors ‖Em (εm ) − [ f ](ξ)hεm ‖∞ for the test function f2

m h1 h2 h3

Error εm Error εm Error εm

16 8.4E−1 8.8E−2 5.3E−1 6.9E−2 5.1E−1 6.1E−2

32 5.1E−1 5.0E−2 2.9E−1 3.6E−2 3.0E−1 3.1E−2

64 3.4E−1 3.0E−2 1.6E−1 1.9E−2 1.7E−1 1.6E−2

128 2.1E−1 1.9E−2 8.8E−2 1.0E−2 9.2E−2 7.8E−3

Example 5.2 We consider another test function with multiple jump discontinuities

f2(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3
2 , 1/8 ≤ x ≤ 1/4
7
4 − x

2 + sin(2πx − 1/4), 3/8 < x ≤ 9/16
11
4 x − 5, 11/16 ≤ x ≤ 7/8

0, otherwise.

For each m ranging in 16, 32, 64, 128, we use the same three pairs of admissible h and ε

as in Example 5.1 and display the the edge detectors in Fig. 3.
Similarly, we compute the approximation error ‖Em(εm)−[ f ](ξ)hε‖∞ and list the results

in Table 2.
We remark that we focus on the approximation of a smoothed edge function in this paper

and the smoothness parameter δ in Eq. (4.1) of the function h and its Fourier transform ĥ
would determine the approximation accuracy. Since h3 has a greater δ than h1 and h2, it has
a better numerical performance than the other two. Moreover, the functions in the Schwartz
class would satisfy the condition in Eq. (4.1) and would provide a large class of admissible
smoothing functions.
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The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.

6 Conclusion

By converting the edge detection problem into the approximation of a smoothed edge function
and employing the admissible frame technique, we are able to develop a theoretic analysis
of the concentration factor method for non-uniform Fourier data. In particular, we derive
admissible conditions on concentration factors for non-uniform Fourier data such that the
edge detector with the concentration factor method converges to the smoothed edge function.
We present some examples of concentration factors satisfying such admissible conditions and
further obtain the convergence rates for such specific examples. Our numerical experiments
with a few admissible concentration factors demonstrate the convergence results in detecting
edges from non-uniform Fourier data for functions with a single jump discontinuity and with
multiple jumps.

We point out that we only consider the case of jittered sampling that is well known
as a Fourier frame in L2[0, 1]. Our approach could also be generalized to other nonuniform
schemes that constitute frames in L2[0, 1]. The key point would rely on deriving the sampling
rate in the admissible frame approach of [13]. Moreover, we focus on the 1D nonuniform
sampling scheme in this paper. The 2Dnonuniform sampling schemeneeds a slightly different
approach and would be investigated in a sequential paper.
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